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I. INTRODUCTION

Previous analyses of antenna surface errors have assumed that errors are
distributed randomly. Such random distribution is a reasonable model for
manufaciuring errors in a rigid structure such as an aluminum reflector
antenna. However, as large space-based phased-array antennas must be both
lightweight and deployable, they are consequently not rigid and thus undergo
dynamic deformations in orbit. Because these deformations are typically
expressed in terms of the mechanical modes of the structure, the errors in the
array-element positions can be expressed discretely as mechanical modes of
surface position. These mechanical deformations vary slowly with time, so
that the radiation performance can be computed from a "frozen" mechanical

deformation.

When the time-varying deformations are expressed as a sum of the mechan-
ical modes weighted by their individual time-phased amplitudes, the radiation
pattern of an array distorted by a single, "frozen" mechanical mode can be
analyzed. In this way, the relationship between individual mechanical modes
and the distorted radiation pattern can be observed. As the actual modal sum
depends on the specific array design, sinele-mode analysis indicates those
mechanical modes that should be optimized in the array design to minimize the

pattern distortion.

Closed-form solutions for the radiation patterns of uniformly illuminated
arrays having modal deformations are developed (1) for small-amplitude deform-
ations, (2) in terms of Bessel functions at discrete angles, and (3) in terms
of paired echoes of the undistorted array pattern; these solutions are com-

1

pared with the antenna-tolerance theory developed by Ruze. In addition, the

pattern distortions for arrays having tapered illuminations are computed.




I1. ANALYSIS OF MECHANICALLY DEFORMED ARRAYS

The array geometry illustrated in Fig. 1 is ideally planar in the x-y
plane. Mechanical deformation results in element displacements in the plane
and normal to the plane; however, the array pattern is decoupled from the
in-plane displacements. Consequently, only the element displacements in the
z-direction will be analyzed. At the far-field angle (6,¢), the contribution

of a single element, including its phase, is
Vi(6,¢) = ae(e,¢)exp{Jk[sine(xicos¢ + yisin¢) + z(xi,yi)cose]} (1)

where ae(e,¢) is the pattern of a single element at the position [xi,yi,z(xiyi)].
The pattern of the array is the sum of the phase contributions of the individual
elements:

V(e,s) = gA(xi,yi)exp{jk[sine(xicos¢ + y;sine) + z(x,y, )cose]) (2)

where A(x,y) is the illumination function. Generally, antenna patterns are
computed for a particular plane of interest, and the geometry of the planar
array 1is compressed into an equivalent linear array to compute that pattern
conveniently. However, an additional assumption must be made to compress a
planar array having element displacements that are normal to the array plane.
For the pattern plane ¢ = (00,1800), the normal displacements of the array
elements are assumed to vary in the x direction only, and the illumination
amplitudes are assumed to vary in the x direction, independently of y. The

pattern of the equivalent linear array is
v(e) = A(x;dexp(Jk[£x sin® + z(x )cose]) (3)
i

For a large array with close element spacing, the array pattern may be
approximated by the integral

L
v(e) = f A(x)exp{jk[* xsine + z(x)cose]}dx ()
-L




TOP VIEW

SIDE VIEW

PLANAR ARRAY WITH MODAL ERRORS

Figure 1. Array Geometry with Oblique, Top, and Side Views
for a Deformed Rectangular, Planar Array




where 2L is the x dimension of the array. Sections II.A and B apply Eq. (4)

to uniformly illuminated arrays having random and deterministic deformations.

A. RANDOM DEFORMATIONS

The standard antenna-tolerance theory developed by Ruze1

models random
surface errors as phase errors having a Gaussian density, then computes the
radiation pattern and gain loss in a statistical sense. To compute the
directivity in the more general case involving phase and amplitude errors, one
must assume that the power density in a specific direction does not correlate
Wwith the total radiated power.2 The random analysis is summarized for

comparison with the deterministic-error model.

Ruze defines the amplitudes of the surface errors by two functions:

(1) the Gaussian probability-density function, and (2) a correlation function.
The Gaussian function specifies the density of phase-error values, and the
correlation function specifies the likelihood that two phase errors on differ-
ent sections of the surface will have equal values. Ruze suggests several
forms of correlation functions, the simplest being the "hat box." The hat-box
correlation function, illustrated in Fig..Z, is a pulse function that has the
value 1 in a correlation region and the value 0 outside that region; within
the correlation region the values are equal, and outside the region they are

uncorrelated.

As the phase-error values are proportional to the deformation amplitudes
of the array, one can extend this tolerance theory to the phase-error values
generated by the mechanical deformations of large arrays; this can be achieved
by assigning a representative Gaussian probability-density function and an
appropriate correlation function to the deformation amplitudes. The probabil-
istic expectation of the far-field radiated power may be obtained by multiply-
ing the radiated power, which is a function of the array element positions, by
the probability density of the deformation amplitudes and integrating over the
possible amplitudes. The expression for the expectation is

[>2]

E(P(8)} = [ P(8,2-2')f(z-2')d(z-2") (5)

-m




Figure 2. "Hat Box" Function for the Correlation of Surface-Error
Amplitudes Having a Correlation Region of Dimension 2a
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where z and z' are the deformation amplitudes at positions x and x', P(8,z-2')
is the product of the voltage and its complex conjugate, and f(z-z2') is the

Gaussian probability-density function, with zero mean and 02 variance. For a
hat-box correlation function whose correlation-region dimension of 2a is much
smaller than the array dimension 2L, the expression for the expected power of

a uniformly illuminated array is

i ; 2 2 2
E{P(8)} = (2L)2 {[§l§£§%§%ﬂ§l]2 o~k o cos"8

C 22 2
. sin(kasing) [1_ e—k o cos 6]}

a
L kasine (6)

The above expression has two terms. One term is the undistorted radiation
pattern reduced by an exponential function, and the other term is directly
related to the ratio of the size of the correlation region to the length of
the array. If the correlation region, 2a, is much smaller than the length of
the array, only the first term of the expected power is significant In this
case, the radiated power decreases exponentially with an increase in the

variance of z.

An array having Gaussian random deformations and a small correlation
interval has a radiation pattern whose gain decreases uniformly, as shown in
Fig. 3. The radiation patterns of arrays having modal deformations have

nonuniform changes in gain.

B. DETERMINISTIC DEFORMATIONS

A large space-based array will have slow mechanical oscillations. At any
instant in time, the continuous surface that spans the element positions can
be expressed as a deterministic function. The instantaneous element displace-
ments from the plane can be expressed as a sum of fundamental modes. The
fundamental modes satisfying the Dirichlet boundary conditions are odd-order

cosine and even-order sine modes:

M
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2mux)

(2m - 1)nx
cos———=———"— + b sin 5L

2(x) = (2n.- 1 2L 2m

m

(7)
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1

The fundamental modes satisfying Neumann boundary conditions are even-order

cosine and odd-order sine modes:

2mnx in(2m - 1)nx)

b s 30

2L ¢ Pom-1 (8)

This section reviews three solutions to the radiation-pattern integral for a
uniformly illuminated, linear array having single-mode errors. One solution
is approximate for small-amplitude errors, the second is exact for discrete
angles, and the third is exact in terms of an infinite summation of paired
echoes. Numerical solutions computed by means of Simpson's rule are shown in
Appendix B.

1. SMALL-AMPLITUDE APPROXIMATION

The small-amplitude solution uses the truncated-series approximation for
the exponential function ¥ 2 1 + x. The new integral is integrable to the

sum of the ideal pattern, sinwu/nu, and a small error pattern,

L

V(u) - 2L §%815 + jmu! % fL z(x) exp(z jmu %] dx (9)

where z(x) is either a sine or a cosine mode of any order and u is defined as
follows:

ru = kLsine (10)

The pattern for an array having small-amplitude cosine errors is

nn . nn 0w
nu 0052— Sinnu —2 s1n2— cosnu

(B2 - w? (3?7 - ()

sinnu '
V(u) = 2L g Jmu 2an{

} (11)

13




The pattern for an array having small-amplitude sine errors is

nn osﬂl in u ingl osmu
> o] > sinwxu mu s 2 (o} m }
(22) 12 - uw?

V(u) » 2L 28y quvop {
wu n

2

(12)
imye _ (mu) B2
2 2

2

The denominator of the error terms, (%1) - (nu)z, yields removable singulari-

ties at ug = g, and a 1/u or 1/u® sl-

fore, the error terms (see Figs. U4-7) have maxima for values of u in the

taper for u < -|ug| and u > |u There-
vicinities of + g and - %. For sine errors the error term is odd (i.e.,
asymmetric) about u = 0; thus the error pattern adds to the ideal pattern
around u = + g, and subtracts from the ideal pattern around u = - %, producing
an asymmetric pattern. For cosine errors the error terms are even (i.e.,
symmetric) about u = 0, so the total pattern is symmetric; however, the error
term has nonzero values at the nulls of the ideal pattern, so the total

pattern has filled-in nulls.
2. DISCRETE-ANGLE SOLUTION

The integral for the radiation pattern of a uniformly illuminated line
source having single, even-mode deformations has a form similar to the
integral representation of the Bessel function of the first kind (integer
order):

n

[ cos(zsiny - my) dy (13)
0

2 |-

Jm(z) =

The transformation of Eq. (4) for an even-sine mode into the form of Eq. (12)

yields
nn
P
2L
V(u) = e {

exp[j(z %En + mu” fg sinn)] dn (14)

The variablz transformation for the order of the Bessel function is a function
of the far-field angle. Therefore, the solution for the radiation pattern in

terms of Bessel functions of integer order is valid only at the angles for

14
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. which 2u/n takes on integer values. The details for the development of this

discrete-angle solution are presented in Appendix A.
- 3. PAIRED-ECHO ANALYSIS

The paired echo is an intuitive method of understanding the distortion of
a Fourier transform process such as might serve as a model for a filter or, in
this case, a far-field pattern. Wheeler6 uses a filter to describe the
interpretation of amplitude and phase errors. 1In this example, the process is
a Fourier transformation from the frequency domain of the signal, where the
filter works, to the time domain of the signal. Amplitude and phase errors in

the frequency domain translate to paired echoes of the signal in the time

domain. The echoes from amplitude
sign, and are symmetrically placed

echoes from phase errors are equal

errors are equal in absolute value and
about the signal (a positive pair); the

in absolute value, are opposite in sign,

and are symmetrically placed about the signal (a negative pair). Positive and

negative pairs are illustrated in Figs. 8 and 9.

The far-field pattern of an antenna is a Fourier transform of the
aperture fields. Modal deformations of the aperture surface produce paired
echoes in the far-field pattern. For an array having an illumination function
that is even about the center of the array, the sine errors produce positive
and negative pairs in the far field and the cosine errors produce only posi-
tive pairs. Negative pairs contribute to an asymmetric pattern because they

subtract from the ideal pattern on one side and add to it on the other.

For a uniformly illuminated array having single-mode errors, the paired

echoes are expressed as follows.

For cosine errors the far-field pattern expressed in terms of its paired

echoes is
4,
a © J ' —
. k Y2k L ,
V(u) = Jylmut TV u) k; (-1) a [Vy(uskn) + V,(u-kn))
i Jolmu' )
(' 22)
® J e
- + ] z (_1)k ck+1 Y L (Volu+[k+%]n] + VO[u-(k+%)n]}] (15)
k=0 n
Jolmu' =)
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NOMINAL PATTERN
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Figure 9. Negative Pair
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For sine errors the far-field pattern expressed in terms of its paired echoes .
is
(o' £
a @ J, (wu' —
V() = Jg(mut )V () kzl 2k ai [V, (uskn) + V (u-kn)]
) - Jo[nu' E—)
(et 2
o ] Tu' —
y o2l Ly [ue(ked)n] - v [u-(ked)n]y] (16)
b 0 2 0 2
k=0 J_(wu' —E]
0 L

where Vy(u) is the ideal array pattern. Vg(u+u,) + Vo(u-ue) is a positive

pair and Vo(u+ue) - Vo(u—ue) is a negative pair. The radiation pattern for an

array having an illumination function that is expressed as a Fourier series of

position on the array may be similarly expressed in terms of paired echoes.

The first two echoes for the n = 1 cosine and sine modes are illustrated in

Figs. 10 and 11. ’
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IT1I. PATTERN DISTORTION

The quality of the radiation pattern of an array depends upon the
coherent interference of the contributions of the individual array elements.
The phase errors due to the displacement of elements from the plane degrade
the pattern quality, which is measured by (1) the gain, shape, beamwidth, and
pointing accuracy of the main beam; (2) the sharpness of the nulls; and
(3) the height of the innermost sidelobes. As was shown in Section II.A,
random errors on a large array will effectively reduce the amplitude of the
radiated power at all the far-field angles, thereby affecting the gain but not
other qualities of the pattern. Single-mode errors have distinctive effects
on the radiation pattern, as is suggested by the form of the small-amplitude

approximation and as illustrated in Appendix B.

The effect of sine errors on the radiation pattern is a shifted boresight
and an asymmetric pattern having higher sidelobes on one side of the main beam
than on the other. The shifted boresight is explained by the linearity of the
sine function at the origin, or the center of the array, which translates to
linear phase errors; linear phase errors, in turn, steer the main beam to an
angle that depends upon the peak amplitude of the errors. The asymmetry is
due to the odd (i.e., asymmetrical) nature of the sine function. For the mode
order n = 1, the main beam retains its gain, shape, and beamwidth, and the
nulls retain their sharpness; however, the higher-order modes lose gain in the

main beam and the nulls begin to fill in.

The effect of cosine errors on the radiation pattern is filled-in nulls
and raised sidelobes. The filled-in nulls cause the first sidelobes to become
part of the main beam. For large-amplitude errors, the main beam bifurcates
when the edges of the array become out of phase with respect to the central

portion of the array.




IV. ILLUMINATION TAPERS

Some applications requiring low sidelobes use arrays having tapered
illumination functions. Single-mode errors, cosine modes in particular, raise
the sidelobes of arrays having tapered illuminations, much as they raise the
sidelobes of uniformly illuminated arrays. In order to meet the low-sidelobe
requirement while compensating for expected modal errors, deformable arrays
should be designed to have even lower sidelobes than would be the case for an
ideal array in which deformation does not occur. One can prevent some effects
of modal deformations of small order and amplitude by illuminating the array
nonuniformly. In particular, the broadening of the main beam may be minimized
by means of a cosine illumination function. A beamwidth factor can be used to
evaluate illumination functions according to the degree to which they minimize
beam broadening. Data for the ideal pattern are listed in Table 1. The

beamwidth factor, which is defined as

BEAMWIDTH C - yISTORTED PATTERN _ 1)

BWF = 100 (“REAMNTOTA OF NOMINAL PATTERN

(1
is used in Tables 2 through 4 to compare the success of several illumination

functions for errors of equal amplitude and mode.

The uniform, triangular, and cosine illumination functions illustrated in
Figs. 12 through 14 were evaluated. Using the beam-broadening factor of the
uniform illumination function as a benchmark, the triangular illumination
function and the first- and second-power cosine illumination functions have
poor beam-broadening factors, and the higher-power cosine illumination
functions have good ones. However, the ideal beamwidths of the higher-power
cosine functions are large. In general, the beam broadening that results from
single-mode errors is less for illumination functions that produce patterns
having very low sidelobes than it is for illumination functions that produce
patterns having moderately low sidelobes. The numerical solutions to the
radiation patterns of arrays having tapered illuminations and single-mode
errors are shown in Appendix B.
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Figure 12.

+L

Uniform Illumination Function
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Figure 13. Triangular Illumination Function
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Figure 14.

+L

Cosinusoidai illumination Function
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V. SUMMARY

Instantaneous mechanical deformations of a large, oscillating planar
array may be expressed by mechanical modes. The pattern distortion corre-
sponding to single-mode deformations has distinct characteristics that
differentiate it from random deformations that yield a uniform decrease in

gain. This report offers several interpretations of this pattern distortion.

The small-amplitude approximation expresses the total pattern as a sum of
the ideal pattern and an error pattern. One can determine the regions of the
pattern for which the error term is significant by inspecting the error
term. In these regions, the characteristics of the pattern distortion are
dictated by whether the error pattern subtracts from or adds to the ideal
pattern. When the small-amplitude approximation is used to find a numerical
representation of the total pattern, the discrete-angle solution may be used

to measure the accuracy of the results.

The paired-echo interpretation offers a perspective of the pattern
distortion as pairs of echoes of the ideal pattern. The paired-echo analysis
offers an intuitive interpretation of the pattern distortion by directly
indicating the regions in which the echoes either add to or subtract from the
ideal pattern.

Aperture-illumination functions that lower the sidelobes are typically
used for applications requiring selective coverage. Modal deformations will
cause pattern distortion that raises the sidelobes, broadens the main beam,
and shifts the boresight by predictable amounts. The technique reported here,
which uses the beamwidth factor to compare the robustness of several illumina-
tion functions, may be used to select an illumination function that compen-

sates for the raised sidelobes caused by the predicted modal deformations of
the array.
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LPPENDIX A. DISCRETE-ANGLE SOLUTION FOR EVEN-MODE DEFORMATIONS

This appendix details the development of an exact, discrete-angle
solution for the radiation pattern of a uniformly illuminated array having
even sine-mode deformations. The companion solution for even ccsine-mode

deformations is also presented.

The principal-plane pattern for a uniformly illuminated, x-directed line

source having deformations in the z-direction at the far-field angle 8 is

L
V(8) = f exp{jk [£ x sin® + z(x) cose]} dx (A1)
-L
where "+" is for ¢ = 0° and "-" is for ¢ = 180°.

Assuming a sing’ ine-mode deformation and transforming the integration

variable to n = r.« -_ brings the integral into the form
2u bn
Viu) = = { explilz N+ mut sinn)] dn (A2)
n

which is similar to the integral representation of the Bessel function of the

first kind and integer order1:

m
f cos(zsiny - my) dy (A3)
0

Jm(z) =

A [

In the Bessel function representation, the order m, which corresponds to *2u/n
the array pattern expression, is an integer; z, which corresponds to =u-
b,/L, is a real number. In the array pattern expression, u is a real function
of the far-field angle 8. Therefore, the similarity of the array pattern
expression to the Bessel function's representation is valid only for integer

values of 2u. n, or only at discrete angles.
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Assume that *2u/n has the integer value m. The array pattern expression,

transformed to the Bessel function variables, is
nn
2

V(m,z) = AL [ cos(mn + 2sinn) dn
nmog

If n is even, Eq. (A5) may be expressed as two sums of g integrals:

Z -1
aL 2 "
Vim,z) = o z cos(mkn) [ cosmn cos(zsinn) dn
k=0 0
n
4L2-1 T
- 2 cos(mkn) cos(kn) [ sinmn sin(zsinn) dn
k=0 0

2

n
L
4 2 m, =
V(m,z) = 2= ] cos(mkn)[1 + (-1)"] 5 (2)
K=0
L
_ AL 22 cos{mkn) cos(kn)[1 - (-1)m] 2 J (z2)
nm K0 2 "'m*~

The solution for an even-cosine mode is similar. The discrete-angle

expressions for the even-sine and even-cosine modes are as follows:

Even-Cosine Modes

2L cos[gl] J(z), m even
V(im,z) = e
jeL sin(E-) J (2), m odd

4o

(Al4)

(A5)

(AE)

(A7)




Even-Sine Modes

2LJm(z), m even
V(m,z) =

-2LJm(z), m odd (A8)

These expressions produce exact results for the array pattern at discrete
angles. They are useful for measuring the accuracy of approximations of the
array pattern, such as the small-amplitude approximation described in Section

II.B.1.
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APPENDIX B. RADIATION PATTERNS
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LABORATORY OPERATIONS

The Aerospace Corporation functions as an “architect-engineer” for
national security projects, specializing in advanced military space systems.
Providing research support, the corporation's Labnratory Operations conducts
experimental and theoretical investigations that focus on the application of
scientific and technical advances to such systems. Vital to the success of
these investigations is the technical staff's wide-ranging expertise and its
ability to stay current with new developments., This expertise is enhanced by
a research program aimed at dealing with the many problems associated with
rapidly evolving space systems. Contributing theilr capabilities to the
research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat
transfer and flight dynamics; chemical and electric propulsion, propellant
chemistry, chemical dynamics, environmental chemistry, trace detection;
spacecraft structural mechanics, contamination, thermal and structural
control; high temperature thermomechanics, gas kinetics and radiation; cw and
pulsed chemical and excimer laser development including chemical kinetics,

spectroscopy, optical resonators, beam control, atmospheric propagation, laser
effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions,
atmospheric optics, light scattering, state-specific chemical reactions and
radiative signatures of missile plumes, sensor out-of-field-of -view rejection,
applied laser spectroscopy, laser chemistry, laser optoelectronics, solar cell
physics, battery electrochemistry, space vacuum and radiation effects on
materials, lubrication and surface phenomena, thermionic emission, photo-
sensitive materials and detectors, atomic frequency standards, and
environmental chemistry.

Computer Science Laboratory: Program verification, program translation,
performance-sensitive system design, distributed architectures for spaceborne
computers, fault-tolerant computer systems, artificial intelligence, micro-
electronics applications, communication protocols, and computer security.

Electronics Research Laboratory: Microelectronics, solid-state device
physics, compound semiconductors, radiation hardening; electro-optics, quantum
electronics, solid-state lasers, optical propagation and communications;
microwave semiconductor devices, microwave/millimeter wave measurements,
diagnostics and radiometry, microwave/millimeter wave thermionic devices;
atomic time and frequency standards; antennas, rf systems, electromagnetic
propagation phenomena, space communication systems.

Materials Sciences Laboratory: Development of new materlals: metals,
alloys, ceramics, polymers and their composites, and new forms of carbon; non-
destructive evaluation, component tailure analysis ani rellability; fracture
mechanics and stress corrosion; analysis and evaluation of materials at
cryogenic and elevated temperatures as well as in space and enemy-induced
environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray
physics, wave-particle interactions, magnetospheric plasma waves; atmospheric
and ionospheric physics, density and composition of the upper atmosphere,
remote sensing using atmosphecic radlation; solar physics, infrared astronomy,
tnfrared signature analysis; effects of solar activity, magnetic storms and
nuclear explosions on the earth's atmosphere, lonosphere and magnetosphere;
effects of electromagnetic and particulate radiations on space systems; space
instrumentation.




